Please install the following packages:
#macrosheds
devtools::install_github('https://github.com/MacroSHEDS/macrosheds.git')
#tidyverse (dplyr, stringr, readr, etc.)
install.packages('tidyverse')
Then download the MacroSheds data we will use
library(macrosheds)
# this is where files will be downloaded. feel free to change it.
project_root <- '~/macrosheds_workshop'
# datasets we will use
ms_download_ws_attr(project_root, dataset = 'summaries')
ms_download_core_data(project_root, domains = c('niwot', 'plum', 'east_river', 'santee'))
These packages are optional (only used here and there, and the overall sequence doesn’t depend on them)
install.packages('xts') # time series representation
install.packages('dygraphs') # interactive plots
install.packages('viridis') # colorblind-friendly color palettes
install.packages('factoextra') # ordination, etc.
install.packages('mapview') # interactive maps
install.packages('data.table') # efficient computation
install.packages('whitebox') # geospatial processing
whitebox::install_whitebox() #additional whitebox binaries. if this fails, use the next line
# whitebox::install_whitebox(platform = 'linux_musl')
long-term watershed ecosystem studies, harmonized
suppressPackageStartupMessages(library(tidyverse))
library(macrosheds)
macrosheds v1.0.2: Up to date ✓
This package is licensed under MIT, but licensing of MacroSheds data is more complex. See
https://docs.google.com/document/d/1CPaQ705QyoWfu6WjA4xHgQooCQ8arq3NZ8DO9tb9jZ0/edit?usp=sharing
Complete metadata: https://portal.edirepository.org/nis/mapbrowse?scope=edi&identifier=1262
options(readr.show_progress = FALSE, #prevent gratuitous printing from read_csv
readr.show_col_types = FALSE, #same
timeout = 600) #allow more time for dataset downloads
project_root <- '~/macrosheds_workshop'
ms_sites <- ms_load_sites() %>%
filter(site_type == 'stream_gauge') #some precip gauges have the same names as stream gauges!
?ms_load_variables
ms_ts_variables <- ms_load_variables(var_set = 'timeseries')
?ms_download_ws_attr
# ms_download_ws_attr(project_root, dataset = 'summaries')
?ms_load_product
ws_smry <- ms_load_product(project_root, prodname = 'ws_attr_summaries')
ws_attr_summaries.csv
variable_category_codes_ws_attr.csv
,
variable_data_source_codes_ws_attr.csv
suppressPackageStartupMessages(library(factoextra))
pca_data <- ws_smry %>%
select(where( ~sum(is.na(.)) / length(.) < 0.3)) %>% #drop columns with >= 30% missing values
drop_na() #drop rows with any missing values
domains <- pca_data$domain
pca_data <- pca_data %>%
select(-site_code, -domain, -network) %>%
select(where(~sd(., na.rm = TRUE) != 0)) %>% #drop columns with no variance
as.matrix()
smry_categories <- substr(colnames(pca_data), 1, 1)
category_map <- c('c' = 'climate', 'h' = 'hydrology', 'l' = 'landcover',
'p' = 'parentmat', 't' = 'terrain', 'v' = 'vegetation',
'w' = 'ws area')
smry_categories <- factor(category_map[match(smry_categories, names(category_map))])
pca <- prcomp(pca_data, center = TRUE, scale. = TRUE)
fviz_eig(pca)
fviz_pca_biplot(pca, geom.var = 'arrow', geom.ind = 'point', title = '',
col.var = smry_categories, palette = 'Dark2')
fviz_pca_biplot(pca, geom.var = '', geom.ind = 'point', title = '',
col.ind = as.factor(domains))
elev_extreme_domains <- ws_smry %>%
filter(! is.na(te_elev_mean)) %>% #no watersheds delineated for McMurdo LTER
group_by(domain) %>%
summarize(domain_mean_elev = mean(te_elev_mean)) %>%
ungroup() %>%
arrange(desc(domain_mean_elev)) %>%
slice(c(1:2, (n() - 1):n())) %>% #2 highest and 2 lowest domains, by average watershed elevation
print() %>%
pull(domain)
# A tibble: 4 × 2
domain domain_mean_elev
<chr> <dbl>
1 niwot 3593.
2 east_river 3344.
3 plum 31.7
4 santee 9.10
sitevars <- ms_load_variables('timeseries_by_site')
sitevars <- filter(sitevars,
domain %in% elev_extreme_domains,
chem_category == 'stream_conc')
length(unique(sitevars$site_code)) # n sites
[1] 43
sitevars <- sitevars %>%
mutate(ndays = difftime(last_record_utc, first_record_utc, unit = 'days')) %>%
filter(ndays >= 2 * 365.25,
mean_obs_per_day * 365.25 >= 36)
get_shared_domain_vars(sitevars)
[1] "Cl" "DOC" "PO4_P" "SO4_S" "TDN"
?ms_download_core_data
# ms_download_core_data(project_root, domains = elev_extreme_domains)
?ms_load_product
(doc <- ms_load_product(
project_root,
prodname = 'stream_chemistry',
filter_vars = 'DOC',
domain = elev_extreme_domains,
warn = FALSE
))
# A tibble: 162,001 × 7
datetime site_code var val ms_status ms_interp val_err
<dttm> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 2015-11-09 00:00:00 Avery GN_DOC 0.38 0 0 0.0001
2 2015-11-10 00:00:00 Avery GN_DOC 0.374 0 1 0.0001
3 2015-11-11 00:00:00 Avery GN_DOC 0.367 0 1 0.0001
4 2015-11-12 00:00:00 Avery GN_DOC 0.361 0 1 0.0001
5 2015-11-13 00:00:00 Avery GN_DOC 0.354 0 1 0.0001
6 2015-11-14 00:00:00 Avery GN_DOC 0.348 0 1 0.0001
7 2015-11-15 00:00:00 Avery GN_DOC 0.341 0 1 0.0001
8 2015-11-16 00:00:00 Avery GN_DOC 0.335 0 1 0.0001
9 2015-11-17 00:00:00 Avery GN_DOC 0.329 0 1 0.0001
10 2015-11-18 00:00:00 Avery GN_DOC 0.322 0 1 0.0001
# ℹ 161,991 more rows
unique(doc$var)
[1] "GN_DOC"
table(doc$ms_status)
0 1
161930 71
table(doc$ms_interp)
0 1
126140 35861
timeseries_boulder.csv
sitevars
library(viridis)
Loading required package: viridisLite
plot_q <- function(ms_root, domain){
q <- ms_load_product(ms_root, prodname = 'discharge', domains = domain)
current_year <- as.numeric(strftime(Sys.Date(), format = '%Y'))
earliest_year <- as.numeric(strftime(min(q$datetime), format = '%Y'))
nyears <- current_year - earliest_year
yrcols <- viridis(n = nyears)
sites <- unique(q$site_code)
plotrc <- ceiling(sqrt(length(sites)))
doyseq <- seq(1, 366, 30)
par(mfrow = c(plotrc, plotrc), mar = c(1, 2, 0, 0), oma = c(0, 0, 2, 0))
for(s in sites){
plot(NA, NA, xlim = c(1, 366), ylim = c(0, nyears), xaxs = 'i', yaxs = 'i',
ylab = '', xlab = '', yaxt = 'n', cex.axis = 0.6, xaxt = 'n', xpd = NA)
axis(1, doyseq, doyseq, tick = FALSE, line = -2, cex.axis = 0.8)
axis(2, 1:nyears, earliest_year:(current_year - 1), las = 2, cex.axis = 0.6,
hadj = 0.7)
qsub <- q %>%
filter(domain == domain, site_code == s) %>%
mutate(doy = as.numeric(strftime(datetime, format = '%j', tz = 'UTC')),
yr_offset = lubridate::year(datetime) - earliest_year)
lubridate::year(qsub$datetime) <- 1972
yrs <- unique(qsub$yr_offset)
for(i in 1:length(yrs)){
qss <- qsub %>%
filter(yr_offset == yrs[i]) %>%
arrange(doy)
lines(qss$doy, c(scale(qss$val)) + qss$yr_offset, col = yrcols[i])
}
mtext(s, 3, outer = FALSE, line = -2)
}
mtext(paste0(domain, ' (DOY vs. Year)'), 3, outer = TRUE)
}
plot_q(project_root, 'boulder')
# plot_q(project_root, 'fernow')
plot_q(project_root, 'baltimore')
# plot_q(project_root, 'hjandrews')
plot_conc <- function(ms_root, chemvar){
unit <- ms_ts_variables %>%
filter(variable_code == !!chemvar,
chem_category == 'stream_conc') %>%
pull(unit)
d <- ms_load_product(ms_root,
prodname = 'stream_chemistry',
filter_vars = chemvar,
warn = FALSE)
ms_sites <- ms_load_sites() %>%
filter(site_type != 'precip_gauge')
d <- ms_sites %>%
select(site_code, domain, network) %>%
right_join(d, by = 'site_code')
domains <- na.omit(unique(d$domain))
dmncolors <- c('brown4', 'brown1', 'blueviolet', 'blue4', 'dodgerblue3', 'blanchedalmond',
'bisque4', 'khaki1', 'gray70', 'gray25', 'aquamarine4',
'darkorange2', 'darkolivegreen4', 'darkolivegreen1', 'darkmagenta',
'darkgoldenrod1', 'cyan3', 'deeppink',
'darkred', 'green1', 'palevioletred4', 'peru', 'yellow', 'springgreen2',
'mediumorchid3', 'white', 'skyblue', 'burlywood4', 'cornflowerblue')
dmncolors <- dmncolors[1:length(domains)]
log_ticks <- c(0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000)
d_by_max <- d %>%
filter(! is.na(val)) %>%
group_by(network, domain, site_code) %>%
summarize(maxval = max(val, na.rm = TRUE),
medianval = median(val, na.rm = TRUE),
n = n(),
.groups = 'drop') %>%
mutate(ntw_dmn_sit = paste(network, domain, site_code,
sep = ' > ')) %>%
filter(n > 30)
site_order <- d_by_max$ntw_dmn_sit[order(d_by_max$medianval)]
sites_with_data <- d_by_max$site_code
d_boxplot <- d %>%
filter(site_code %in% !!sites_with_data) %>%
group_by(network, domain, site_code) %>%
summarize(box_stats = list(boxplot.stats(val)),
.groups = 'drop') %>%
mutate(color = dmncolors[match(domain, domains)],
ntw_dmn_sit = paste(network, domain, site_code,
sep = ' > '))
included_domain_inds <- which(domains %in% unique(d_by_max$domain))
excluded_domains <- domains[-included_domain_inds]
included_domains <- domains[included_domain_inds]
included_dmncolors <- dmncolors[included_domain_inds]
d_boxplot <- d_boxplot[rev(order(match(d_boxplot$ntw_dmn_sit, site_order))), ]
nsites <- nrow(d_boxplot)
ylims <- range(d$val, na.rm = TRUE)
ylims[ylims == 0] <- 0.001
ylims <- log(ylims)
plot(1:nsites, rep(0, nsites), ylim = ylims, type = 'n', yaxt = 'n',
ylab = paste0('log ', sub('_', '-', chemvar), ' (', unit, ')'),
xlab = '', xaxt = 'n', yaxs = 'i',
main = paste(chemvar, 'distribution across sites'), xlim = c(1, nsites))
axis(2, at = log(log_ticks), labels = log_ticks)
corners = par("usr")
rect(corners[1], corners[3], corners[2], corners[4], col = 'black')
for(j in 1:nsites){
color <- slice(d_boxplot, j) %>% pull(color)
stats <- (slice(d_boxplot, j) %>% pull(box_stats))[[1]]
outliers <- log(stats$out)
box_whisk <- log(stats$stats)
segments(x0 = j, x1 = j, y0 = box_whisk[1], y1 = box_whisk[2],
col = color, lwd = 2, lend = 3)
points(x = j, y = box_whisk[3], col = color, pch = 20)
segments(x0 = j, x1 = j, y0 = box_whisk[4], y1 = box_whisk[5],
col = color, lwd = 2, lend = 3)
points(x = rep(j, length(outliers)), y = outliers, col = color,
pch = 20, cex = 0.2)
}
legend('topright', legend = included_domains, lty = 1,
col = included_dmncolors, bty = 'n', lwd = 3,
text.col = 'white', ncol = ceiling(length(included_domains) / 7))
# newline_seq <- try(seq(6, length(excluded_domains), 6), silent=TRUE)
# if(! inherits(newline_seq, 'try-error')){
# excluded_domains[newline_seq] = paste0('\n', excluded_domains[newline_seq])
# }
text(x = quantile(1:nsites, 0.15),
y = quantile(ylims, 0.95), adj = 0, col = 'green',
labels = paste0('Sites: ', length(unique(d_boxplot$ntw_dmn_sit))))
}
#note that Mike ran these with all domains downloaded
plot_conc(project_root, 'NO3_N') #nitrate-as-nitrogen
plot_conc(project_root, 'DOC')
plot_conc(project_root, 'SO4_S') #sulfate-as-sulfur
doc_wide <- doc %>%
filter(ms_status == 0) %>% #remove ms_status == 1 (questionable)
select(datetime, site_code, val) %>%
left_join(select(ms_sites, site_code, domain), #join column of domain names
by = 'site_code') %>%
filter(! is.na(domain)) %>% #some site data is missing in MS version 1 (whoops)
pivot_wider(names_from = c(domain, site_code),
values_from = val,
names_sep = '__') %>% #column names are of the form <domain>__<site_code>
arrange(datetime) %>% #make sure it's all sorted chronologically
complete(datetime = seq(first(datetime), last(datetime), by = 'day')) #explicate missing observations
suppressPackageStartupMessages(library(xts))
library(dygraphs)
dmn_colors <- factor(str_split_fixed(colnames(doc_wide)[-1], '__', n = 2)[, 1])
levels(dmn_colors) <- hcl.colors(length(elev_extreme_domains))
dg <- dygraph(xts(x = doc_wide[, -1], order.by = doc_wide$datetime)) %>%
dyRangeSelector()
for(i in 2:ncol(doc_wide)){
dg <- dySeries(dg, colnames(doc_wide)[i], color = as.character(dmn_colors[i - 1]))
}
dg
#compute CV for each site
#join ws attrs
#glmnet
NO3_N_conc <- ms_load_product(
project_root,
prodname = 'stream_chemistry',
filter_vars = 'NO3_N',
domain = 'niwot',
warn = FALSE
)
Q <- ms_load_product(
project_root,
prodname = 'discharge',
domain = 'niwot',
warn = FALSE
)
NO3_N_conc <- semi_join(NO3_N_conc, Q, by = 'site_code')
#before
filter(NO3_N_conc,
datetime == as.POSIXct('1985-05-09 00:00:00', tz = 'UTC'),
site_code == 'ALBION')
# A tibble: 1 × 7
datetime site_code var val ms_status ms_interp val_err
<dttm> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 1985-05-09 00:00:00 ALBION GN_NO3_N 0.182 0 0 0.01
NO3_N_flux <- suppressPackageStartupMessages({
ms_calc_flux(NO3_N_conc, Q, q_type = 'discharge')
})
[1] "q dataset has a daily interval"
#after
filter(NO3_N_flux,
datetime == as.POSIXct('1985-05-09 00:00:00', tz = 'UTC'),
site_code == 'ALBION')
# A tibble: 1 × 7
datetime site_code var val ms_status ms_interp val_err
<dttm> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 1985-05-09 00:00:00 ALBION GN_NO3_N 0.00113 0 0 0.0000621
# this function will be officially included in the macrosheds package when we
# release version 2 of the MacroSheds dataset, which will include monthly and
# yearly load estimates based on Gubbins et al. in prep. For now, you can call it
# with `:::`, which accesses "internal" package functions.
NO3_N_load <- macrosheds:::ms_calc_flux_rsfme(
NO3_N_conc, Q,
method = 'beale',
aggregation = 'annual'
)
ms_run_egret(stream_chemistry = filter(NO3_N_conc, site_code == 'ALBION'),
discharge = filter(Q, site_code == 'ALBION'))
library(imputeTS)
Registered S3 method overwritten by 'quantmod':
method from
as.zoo.data.frame zoo
Attaching package: 'imputeTS'
The following object is masked from 'package:zoo':
na.locf
siteyears_keep <- NO3_N_flux %>%
group_by(site_code, year = strftime(datetime, format = '%Y')) %>%
summarize(n = length(na.omit(val))) %>%
filter(n > 365.25 * 0.5)
`summarise()` has grouped output by 'site_code'. You can override using the
`.groups` argument.
NO3_N_flux_interp <- NO3_N_flux %>%
filter(site_code == 'ALBION',
datetime >= as.Date('1996-01-01'),
datetime <= as.Date('2000-12-31')) %>%
arrange(datetime) %>%
complete(datetime = seq(first(datetime), last(datetime), by = 'day')) %>%
mutate(val = na_interpolation(val))
NO3_N_flux_interp %>%
group_by(year = strftime(datetime, format = '%Y')) %>%
summarize(load_kg_ha = sum(val))
# A tibble: 5 × 2
year load_kg_ha
<chr> <dbl>
1 1996 0.452
2 1997 0.713
3 1998 0.385
4 1999 0.885
5 2000 0.290
(kg_ha_d <- slice(NO3_N_flux, 1:3))
# A tibble: 3 × 7
datetime site_code var val ms_status ms_interp val_err
<dttm> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 1985-05-09 00:00:00 ALBION GN_NO3_N 0.00113 0 0 0.0000621
2 1985-05-10 00:00:00 ALBION GN_NO3_N 0.00180 0 1 0.000107
3 1985-05-11 00:00:00 ALBION GN_NO3_N 0.00101 0 1 0.0000654
(kg_d <- ms_undo_scale_flux_by_area(kg_ha_d))
# A tibble: 3 × 7
datetime site_code var val ms_status ms_interp val_err
<dttm> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 1985-05-09 00:00:00 ALBION GN_NO3_N 0.813 0 0 0.0000621
2 1985-05-10 00:00:00 ALBION GN_NO3_N 1.29 0 1 0.000107
3 1985-05-11 00:00:00 ALBION GN_NO3_N 0.724 0 1 0.0000654
(kg_ha_d <- ms_scale_flux_by_area(kg_d))
# A tibble: 3 × 7
datetime site_code var val ms_status ms_interp val_err
<dttm> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 1985-05-09 00:00:00 ALBION GN_NO3_N 0.00113 0 0 0.0000621
2 1985-05-10 00:00:00 ALBION GN_NO3_N 0.00180 0 1 0.000107
3 1985-05-11 00:00:00 ALBION GN_NO3_N 0.00101 0 1 0.0000654
#NOTE: not every function set up to perform error computations yet
?ms_generate_attribution
attrib <- ms_generate_attribution(doc, chem_source = 'stream')
ls.str(attrib)
acknowledgements : chr "Primary data were provided by the following sources:\n1. East River SFA DOE (Funded by the Department of Energy"| __truncated__
bibliography : chr [1:120] "@article{vlah_etal_macrosheds_2023,\n\tauthor = {Vlah, Michael J. and Rhea, Spencer and Bernhardt, Emily S. and"| __truncated__ ...
full_details_timeseries : tibble [101 × 27] (S3: tbl_df/tbl/data.frame)
full_details_ws_attr : tibble [28 × 8] (S3: tbl_df/tbl/data.frame)
intellectual_rights_explanations : chr [1:4] "A share-alike license means derivative works must propagate the original license terms. If may_disregard_with_p"| __truncated__ ...
intellectual_rights_notifications : List of 4
$ sharealike_license : tibble [1 × 5] (S3: tbl_df/tbl/data.frame)
$ notify_of_intent_M : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
$ notify_on_distribution_M: tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
$ provide_access_M : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
attrib$intellectual_rights_notifications
$sharealike_license
# A tibble: 1 × 5
network domain macrosheds_prodname may_disregard_with_permission contact
<chr> <chr> <chr> <lgl> <chr>
1 <NA> <NA> tcw (watershed attribute) FALSE https:…
$notify_of_intent_M
# A tibble: 1 × 4
network domain macrosheds_prodname contact
<chr> <chr> <chr> <chr>
1 lter plum stream_chemistry pie_im@mbl.edu
$notify_on_distribution_M
# A tibble: 1 × 4
network domain macrosheds_prodname contact
<chr> <chr> <chr> <chr>
1 lter plum stream_chemistry pie_im@mbl.edu
$provide_access_M
# A tibble: 1 × 4
network domain macrosheds_prodname contact
<chr> <chr> <chr> <chr>
1 lter plum stream_chemistry pie_im@mbl.edu
attrib$intellectual_rights_explanations
[1] "A share-alike license means derivative works must propagate the original license terms. If may_disregard_with_permission is TRUE, you may ask the primary source contact for permission to use your own license."
[2] "notify_of_intent_M means the primary source requires notice of any plans to publish derivative works that use their data."
[3] "notify_on_distribution_M means the primary source requires that they be informed of any publications resulting from their data."
[4] "provide_access_M means the primary source requires online access to any publications resulting from their data."
t(attrib$full_details_timeseries[1, ])
[,1]
domain "east_river"
network "doe"
macrosheds_prodcode "VERSIONLESS008"
macrosheds_prodname "ws_boundary"
doi "10.21952/WTR/1508403"
data_status NA
license "https://creativecommons.org/licenses/by/4.0/"
license_type "Attribution"
license_sharealike NA
IR_acknowledgement_text NA
IR_acknowledge_domain NA
IR_acknowledge_funding_sources NA
IR_acknowledge_grant_numbers NA
IR_notify_of_intentions NA
IR_notify_on_distribution NA
IR_provide_online_access NA
IR_provide_two_reprints NA
IR_collaboration_consultation NA
IR_questions NA
IR_needs_clarification NA
contact "rosemary.carroll@dri.edu"
contact_name1 "Rosemary Carroll"
creator_name1 "Rosemary Carroll"
funding "Funded by the Department of Energy"
citation "Carroll, R., Bill, M., Dong, W., & Williams, K. (2019). Sub-Basin Delineation for the Upper East River, Colorado, United States. Watershed Function SFA. https://doi.org/10.21952/WTR/1508403"
link "https://data.ess-dive.lbl.gov/catalog/d1/mn/v2/packages/application%2Fbagit-097/ess-dive-3b9a58adc163fd4-20190509T155206477018"
link_download_datetime "2022-05-16 18:26:32 UTC"
attrib <- ms_generate_attribution(doc, chem_source = 'stream', write_to_dir = '~')
Warning in dir.create(write_to_dir):
'/home/mike/macrosheds_attribution_information' already exists
Output files written to ~/macrosheds_attribution_information/
read_file('~/macrosheds_attribution_information/ms_bibliography.bib') %>%
substr(1, 1092) %>%
cat()
@article{vlah_etal_macrosheds_2023,
author = {Vlah, Michael J. and Rhea, Spencer and Bernhardt, Emily S. and Slaughter, Weston and Gubbins, Nick and DelVecchia, Amanda G. and Thellman, Audrey and Ross, Matthew R. V.},
title = {MacroSheds: A synthesis of long-term biogeochemical, hydroclimatic, and geospatial data from small watershed ecosystem studies},
journal = {Limnology and Oceanography Letters},
volume = {8},
number = {3},
pages = {419-452},
doi = {https://doi.org/10.1002/lol2.10325},
url = {https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.1002/lol2.10325},
year = {2023},
}
@article{carroll_sub-basin_2019,
title = {Sub-{Basin} {Delineation} for the {Upper} {East} {River}, {Colorado}, {United} {States}},
doi = {10.21952/WTR/1508403},
journal = {Watershed Function SFA},
author = {Carroll, R. and Bill, M. and Dong, W. and Williams, K.},
year = {2019},
}
@misc{usda_forest_service_southern_region_francis_2011,
title = {Francis {Marion} \& {Sumter} {National} {Forests}: {SEF}\_Boundary},
author = {{USDA Forest Service, Southern Region}},
year = {2011},
}
(interactive, so output not included in the HTML version of this document)
can work where StreamStats fails, especially in small watersheds
# whitebox::install_whitebox() #if this fails, use the next line
# whitebox::install_whitebox(platform = 'linux_musl')
tmp <- tempdir()
out <- ms_delineate_watershed(
lat = 44.21013,
long = -122.2571,
crs = 4326,
write_dir = tmp,
write_name = 'example_site',
)
select <- dplyr::select #resolve namespace conflict introduced by raster package
str(out) #specifications of your successful delineation
(watershed boundaries, precip gauge locations, stream gauge locations)
suppressPackageStartupMessages(library(mapview))
ws_bound <- ms_load_spatial_product(project_root, 'ws_boundary', domain = 'boulder')
prcp_gauges <- ms_load_spatial_product(project_root, 'stream_gauge_locations', domain = 'boulder')
strm_gauges <- ms_load_spatial_product(project_root, 'precip_gauge_locations', domain = 'boulder')
mapview(ws_bound) + mapview(prcp_gauges) + mapview(strm_gauges, col.regions = rainbow(n = 3))
Vignettes will only load if you installed macrosheds
with build_vignettes=TRUE
, but they’re also hosted as
markdown files here.
These provide tutorials on data retrieval, flux calculation, watershed
delineation, and precip interpolation.
vignette(package = 'macrosheds')
vignette('ms_watershed_delineation', package = 'macrosheds')
?ms_synchronize_timestep # upsample or downsample macrosheds data
?ms_calc_watershed_precip # spatial interpolation of precip gauge data
?ms_separate_baseflow # baseflow/stormflow separation via hydrostats
(just watershed descriptors and streamflow time series)
camels_dir <- file.path(project_root, 'camels')
dir.create(camels_dir, showWarnings = FALSE)
attr_categories <- c('clim', 'geol', 'soil', 'topo', 'vege', 'hydro')
#watershed attributes
for(x in attr_categories){
download.file(paste0('https://gdex.ucar.edu/dataset/camels/file/camels_', x, '.txt'),
destfile = paste0(camels_dir, '/', x, '.txt'))
}
# #Daymet forcings
# download.file('https://gdex.ucar.edu/dataset/camels/file/basin_timeseries_v1p2_modelOutput_daymet.zip',
# destfile = file.path(camels_dir, 'daymet.zip'))
#observed flow
# download.file('https://gdex.ucar.edu/dataset/camels/file/basin_timeseries_v1p2_metForcing_obsFlow.zip',
# destfile = file.path(camels_dir, 'flow.zip'))
# unzip(file.path(camels_dir, 'flow.zip')) #untested. be aware of the truncation issue described in ?unzip
view_attr_dists <- function(path_to_camels){
char_cols <- c('dom_land_cover', 'geol_1st_class', 'geol_2nd_class',
'high_prec_timing', 'low_prec_timing')
vege <- read_delim(file.path(path_to_camels, 'vege.txt'), delim = ';')
topo <- read_delim(file.path(path_to_camels, 'topo.txt'), delim = ';')
geol <- read_delim(file.path(path_to_camels, 'geol.txt'), delim = ';')
soil <- read_delim(file.path(path_to_camels, 'soil.txt'), delim = ';')
clim <- read_delim(file.path(path_to_camels, 'clim.txt'), delim = ';')
hydro <- read_delim(file.path(path_to_camels, 'hydro.txt'), delim = ';')
categories <- c(rep('vege', ncol(vege) - 1),
rep('topo', ncol(topo) - 1),
rep('geol', ncol(geol) - 1),
rep('soil', ncol(soil) - 1),
rep('clim', ncol(clim) - 1),
rep('hydr', ncol(hydro) - 1))
d <- reduce(list(vege, topo, geol, soil, clim, hydro), full_join, by = 'gauge_id') %>%
# select(-matches(!!char_cols)) %>%
mutate(across(-c(gauge_id, !!char_cols), as.numeric))
category_colors <- c('vege' = 'forestgreen',
'topo' = 'black',
'geol' = 'gray50',
'soil' = 'orange4',
'clim' = 'darkblue',
'hydr' = 'turquoise3')
nrows <- ceiling(sqrt(length(categories)))
par(mfrow = c(nrows, length(categories) / nrows),
mar = c(1, 2, 0, 0), oma = rep(0.5, 4))
plot(1, 1, type = 'n', axes = F)
legend('left', legend = names(category_colors), col = unname(category_colors),
lty = 1, lwd = 3, bty = 'n')
legend('right', legend = c('CAMELS', 'MacroSheds'),
fill = c('gray70', 'darkviolet'), bty = 'n', border = NA)
for(i in 2:ncol(d)){
varname <- colnames(d)[i]
if(! varname %in% char_cols){
dvar <- d %>%
select(gauge_id, !!varname) %>%
filter(! is.na(!!varname)) %>%
arrange(!!sym(varname))
source_color <- if_else(grepl('^[0-9]{6,}$', dvar$gauge_id), 'gray70', 'darkviolet')
color <- category_colors[categories[i - 1]]
# color <- category_colors[names(category_colors) == categories[i - 1]]
barplot(dvar[[varname]], col = source_color, border = source_color)
box(col = color, lwd = 4)
mtext(varname, 3, line = -1.5, col = 'black')
}
}
}
view_q_dists <- function(path_to_camels){
flowdir <- file.path(path_to_camels, 'basin_dataset_public_v1p2/usgs_streamflow')
flowfiles <- list.files(flowdir, recursive = TRUE, pattern = 'streamflow_qc\\.txt$',
full.names = TRUE)
par(mfrow = c(1, 1), mar = c(2, 4, 1, 1))
plot(as.Date(c('1930-01-01', '2023-07-30')), log(c(0.001, 1e6)), type = 'n',
xlab = '', ylab = 'Log discharge (cfs)', yaxt = 'n')
yaxis <- c(0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 1e5, 1e6)
axis(2, log(yaxis), labels = as.character(yaxis))
for(f in flowfiles){
flow <- read.fwf(
f,
widths = c(9, 4, 3, 3, 9, 2),
header = FALSE,
strip.white = TRUE,
colClasses = 'character',
col.names = c('gauge_id', 'year', 'month', 'day', 'Q_cfs', 'flag')
) %>%
as_tibble() %>%
mutate(date = as.Date(paste(year, month, day), format = '%Y %m %d'),
Q_cfs = log(as.numeric(Q_cfs))) %>%
mutate(Q_cfs = if_else(Q_cfs == -999, NA_real_, Q_cfs))
lines(flow$date, flow$Q_cfs, col = adjustcolor('black', alpha.f = 0.3))
# mm/d cfs m^3/ft^3 mm/m s/d m^2
# discharge = discharge * 0.028316846 * 1000 * 86400 / ws_area_m2)
}
}
view_attr_dists(camels_dir)
ms_download_ws_attr(project_root, dataset = 'CAMELS summaries')
Downloading dataset type: CAMELS summaries (1/1; download id 39944257)
watershed_summaries_CAMELS.feather successfully downloaded to ~/macrosheds_workshop
ms_cmls <- ms_load_product(project_root, prodname = 'ws_attr_CAMELS_summaries') %>%
rename(geol_porostiy = geol_porosity, #accommodate typo in CAMELS dataset
q5 = Q5, q95 = Q95, baseflow_index = baseflow_index_landson) #and some slight name differences
#proportion of missing values per column
apply(ms_cmls, MARGIN = 2, function(x) round(sum(! is.na(x)) / length(x), 2))
site_code domain network
1.00 1.00 1.00
p_mean pet_mean aridity
0.93 0.93 0.93
p_seasonality frac_snow high_prec_freq
0.93 0.93 0.93
high_prec_dur high_prec_timing low_prec_freq
0.93 0.93 0.93
low_prec_dur low_prec_timing geol_1st_class
0.93 0.93 0.00
glim_1st_class_frac geol_2nd_class glim_2nd_class_frac
0.97 0.00 0.97
carbonate_rocks_frac geol_porostiy geol_permeability
0.97 0.91 0.91
sand_frac silt_frac clay_frac
0.76 0.76 0.76
organic_frac gauge_lat gauge_lon
0.76 1.00 1.00
area elev_mean slope_mean
0.99 0.99 0.99
frac_forest dom_land_cover_frac dom_land_cover
0.89 0.89 0.89
root_depth_50 root_depth_99 q_mean
0.89 0.89 0.93
runoff_ratio stream_elas slope_fdc
0.93 0.93 0.87
baseflow_index hfd_mean q5
0.93 0.93 0.93
q95 high_q_freq high_q_dur
0.93 0.93 0.93
low_q_freq low_q_dur zero_q_freq
0.93 0.93 0.93
camels_ms_dir <- file.path(project_root, 'camels_macrosheds_merge')
dir.create(camels_ms_dir, showWarnings = FALSE)
cmls_topo <- read_delim(file.path(camels_dir, 'topo.txt'), delim = ';') %>%
rename(area = area_gages2) %>% #could also use area_geospa_fabric here
mutate(across(everything(), as.character))
ms_cmls %>%
select(gauge_id = site_code, matches(colnames(cmls_topo)), 'area') %>%
mutate(across(everything(), as.character)) %>%
bind_rows(cmls_topo) %>%
write_delim(file.path(camels_ms_dir, 'topo.txt'), delim = ';')
camels_ms_merge <- function(dataset, read_dir, write_dir){
#dataset: character; one of "vege", "topo", "soil", "geol", "hydro", "clim"
cmls_d <- read_delim(paste0(read_dir, '/', dataset, '.txt'), delim = ';') %>%
mutate(across(everything(), as.character))
missing_vars <- setdiff(colnames(cmls_d), colnames(ms_cmls)) %>%
str_subset('gauge_id', negate = TRUE)
if(length(missing_vars)){
print(paste('MacroSheds is missing some CAMELS variables:',
paste(missing_vars, collapse = ', ')))
}
ms_cmls %>%
select(gauge_id = site_code, matches(colnames(cmls_d))) %>%
mutate(across(everything(), as.character)) %>%
bind_rows(cmls_d) %>%
write_delim(paste0(write_dir, '/', dataset, '.txt'), delim = ';')
}
camels_ms_merge('vege', read_dir = camels_dir, write_dir = camels_ms_dir)
[1] "MacroSheds is missing some CAMELS variables: lai_max, lai_diff, gvf_max, gvf_diff"
camels_ms_merge('geol', read_dir = camels_dir, write_dir = camels_ms_dir)
camels_ms_merge('soil', read_dir = camels_dir, write_dir = camels_ms_dir)
[1] "MacroSheds is missing some CAMELS variables: soil_depth_pelletier, soil_depth_statsgo, soil_porosity, soil_conductivity, max_water_content, water_frac, other_frac"
camels_ms_merge('clim', read_dir = camels_dir, write_dir = camels_ms_dir)
camels_ms_merge('hydro', read_dir = camels_dir, write_dir = camels_ms_dir)
view_attr_dists(camels_ms_dir)